Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1529(1): 101-108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715781

RESUMO

This study assessed the projected near-surface wind speed (SWS) changes and variability over the Iberian Peninsula for the 21st century. Here, we compared Coupled Model Intercomparison Project Phase 6 global climate models (GCMs) with a higher spatial resolution regional climate model (RCM; ∼20 km), known as WRF-CESM2, which was created by a dynamic downscaling of the Community Earth System Model version 2 (CESM2) using the Weather Research and Forecasting (WRF) model. Our analysis found that the GCMs tended to overestimate observed SWS for 1985-2014, while the higher spatial resolution of the WRF-CESM2 did not improve the accuracy and underestimated the SWS magnitude. GCMs project a decline of SWS under high shared socioeconomic pathways (SSPs) greenhouse concentrations, such as SSP370 and SSP585, while an interdecadal oscillation appears in SSP126 and SSP245 for the end of the century. The WRF-CESM2 under SSP585 predicts the opposite increasing SWS. Our results suggest that 21st-century projections of SWS are uncertain even for regionalized products and should be taken with caution.


Assuntos
Cinarizina , Modelos Climáticos , Humanos , Vento , Incerteza , Tempo (Meteorologia) , Mudança Climática
2.
Reg Environ Change ; 23(1): 32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741241

RESUMO

The 2018-2019 Central European drought was probably the most extreme in Germany since the early sixteenth century. We assess the multiple consequences of the drought for natural systems, the economy and human health in the German part of the Elbe River basin, an area of 97,175 km2 including the cities of Berlin and Hamburg and contributing about 18% to the German GDP. We employ meteorological, hydrological and socio-economic data to build a comprehensive picture of the drought severity, its multiple effects and cross-sectoral consequences in the basin. Time series of different drought indices illustrate the severity of the 2018-2019 drought and how it progressed from meteorological water deficits via soil water depletion towards low groundwater levels and river runoff, and losses in vegetation productivity. The event resulted in severe production losses in agriculture (minus 20-40% for staple crops) and forestry (especially through forced logging of damaged wood: 25.1 million tons in 2018-2020 compared to only 3.4 million tons in 2015-2017), while other economic sectors remained largely unaffected. However, there is no guarantee that this socio-economic stability will be sustained in future drought events; this is discussed in the light of 2022, another dry year holding the potential for a compound crisis. Given the increased probability for more intense and long-lasting droughts in most parts of Europe, this example of actual cross-sectoral drought impacts will be relevant for drought awareness and preparation planning in other regions. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-023-02032-3.

3.
Annu Rev Public Health ; 44: 213-232, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36623928

RESUMO

Extreme weather events are expected to increase due to climate change, which could pose an additional burden of morbidity and mortality. In recent decades, drought severity has increased in several regions around the world, affecting health by increasing the risk of water-, food-, and vector-borne diseases, malnutrition, cardiovascular and respiratory illness, mental health disorders, and mortality. Drought frequency and severity are expected to worsen across large regions as a result of a decrease in precipitation and an increase in temperature and atmospheric evaporative demand, posing a pressing challenge for public health. Variation in impacts among countries and communities is due to multiple factors, such as aging, socioeconomic status, access to health care, and gender, affecting population resilience. Integrative proactive action plans focused on risk management are required, and resources should be transferred to developing countries to reduce their vulnerability and risk.


Assuntos
Secas , Saúde Pública , Humanos , Mudança Climática
4.
Philos Trans A Math Phys Eng Sci ; 380(2238): 20210285, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36300353

RESUMO

Drought is one of the most difficult natural hazards to quantify and is divided into categories (meteorological, agricultural, ecological and hydrological), which makes assessing recent changes and future scenarios extremely difficult. This opinion piece includes a review of the recent scientific literature on the topic and analyses trends in meteorological droughts by using long-term precipitation records and different drought metrics to evaluate the role of global warming processes in trends of agricultural, hydrological and ecological drought severity over the last four decades, during which a sharp increase in atmospheric evaporative demand (AED) has been recorded. Meteorological droughts do not show any substantial changes at the global scale in at least the last 120 years, but an increase in the severity of agricultural and ecological droughts seems to emerge as a consequence of the increase in the severity of AED. Lastly, this study evaluates drought projections from earth system models and focuses on the most important aspects that need to be considered when evaluating drought processes in a changing climate, such as the use of different metrics and the uncertainty of modelling approaches. This article is part of the Royal Society Science+ meeting issue 'Drought risk in the Anthropocene'.


Assuntos
Mudança Climática , Secas , Hidrologia , Clima , Incerteza
5.
Sci Data ; 8(1): 186, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285236

RESUMO

Climate proxy data are required for improved understanding of climate variability and change in the pre-instrumental period. We present the first international initiative to compile and share information on pro pluvia rogation ceremonies, which is a well-studied proxy of agricultural drought. Currently, the database has more than 3500 dates of celebration of rogation ceremonies, providing information for 153 locations across 11 countries spanning the period from 1333 to 1949. This product provides data for better understanding of the pre-instrumental drought variability, validating natural proxies and model simulations, and multi-proxy rainfall reconstructions, amongst other climatic exercises. The database is freely available and can be easily accessed and visualized via http://inpro.unizar.es/ .

6.
Environ Pollut ; 288: 117802, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284210

RESUMO

This study investigates changes in air quality conditions during the restricted COVID-19 lockdown period in 2020 across 21 metropolitan areas in the Middle East and how these relate to surface urban heat island (SUHI) characteristics. Based on satellite observations of atmospheric gases from Sentinel-5, results indicate significant reductions in the levels of atmospheric pollutants, particularly nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). Air quality improved significantly during the middle phases of the lockdown (April and May), especially in small metropolitan cities like Amman, Beirut, and Jeddah, while it was less significant in "mega" cities like Cairo, Tehran, and Istanbul. For example, the concentrations of NO2 in Amman, Beirut, and Jeddah decreased by -56.6%, -43.4%, and -32.3%, respectively, during April 2020, compared to April 2019. Rather, there was a small decrease in NO2 levels in megacities like Tehran (-0.9%) and Cairo (-3.1%). Notably, during the lockdown period, there was a decrease in the mean intensity of nighttime SUHI, while the mean intensity of daytime SUHI experienced either an increase or a slight decrease across these locations. Together with the Gulf metropolitans (e.g. Kuwait, Dubai, and Muscat), the megacities (e.g. Tehran, Ankara, and Istanbul) exhibited anomalous increases in the intensity of daytime SUHI, which may exceed 2 °C. Statistical relationships were established to explore the association between changes in the mean intensity and the hotspot area in each metropolitan location during the lockdown. The findings indicate that the mean intensity of SUHI and the spatial extension of hotspot areas within each metropolitan had a statistically significant negative relationship, with Pearson's r values generally exceeding - 0.55, especially for daytime SUHI. This negative dependency was evident for both daytime and nighttime SUHI during all months of the lockdown. Our findings demonstrate that the decrease in primary pollutant levels during the lockdown contributed to the decrease in the intensity of nighttime SUHIs in the Middle East, especially in April and May. Changes in the characteristics of SUHIs during the lockdown period should be interpreted in the context of long-term climate change, rather than just the consequence of restrictive measures. This is simply because short-term air quality improvements were insufficient to generate meaningful changes in the region's urban climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Temperatura Alta , Humanos , Irã (Geográfico) , Oriente Médio , Melhoria de Qualidade , SARS-CoV-2
8.
Glob Chang Biol ; 26(9): 5063-5076, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479675

RESUMO

Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e. non-time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above-ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above-ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non-stationary relationships between climate, forest structure and demography. Above-ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.


Assuntos
Mudança Climática , Florestas , Árvores , Água
9.
Ann N Y Acad Sci ; 1472(1): 155-172, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32406067

RESUMO

Flash droughts are characterized by rapid onset and intensification, as well as major environmental and agricultural impacts. In this study, we developed an objective method for identifying flash droughts using the standardized evaporation precipitation index (SPEI) based on a short time scale (1-month) and high-frequency data (weekly). The identification of flash droughts was focused on the development phase, anomalous decreases in index values in a short time period (4 weeks), and the magnitude of the events. The method was applied to mainland Spain and the Balearic Islands using a high spatial resolution gridded dataset for the period 1961-2018. For this period of 58 years, we characterized the occurrence of flash droughts and showed that for Spain, there was a large spatial and temporal variability in their frequency, with more occurring in the northwest than in the central and southern regions. The northern regions, where a higher frequency of flash droughts was found, showed negative trends in the frequency of flash droughts, while the regions subject to fewer flash drought events showed generally positive trends. We investigated the relative frequency of flash droughts affecting the study regions and found that they are a common phenomenon, as 40% of all droughts were characterized by rapid development. The findings of this study have important implications for drought assessment, monitoring, and mitigation.


Assuntos
Mudança Climática , Secas , Monitoramento Ambiental , Espanha
10.
Sci Data ; 7(1): 125, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345985

RESUMO

Monitoring and management of several environmental and socioeconomic sectors require climate data that can be summarized using a set of standard and meaningful climate metrics. This study describes a newly developed gridded dataset for the whole of Europe, which employed a set of 125 climate indices spanning different periods based on data availability, but mainly 1950-2017 and 1979-2017. This dataset comprehensively summarizes climate variability in Europe for a wide range of climate variables and conditions, including air temperature, precipitation, biometeorology, aridity, continentality, drought, amongst others. Climate indices were computed at different temporal scales (i.e. monthly, seasonal and annual) and mapped at a grid interval of 0.25°. We intend to update these indices on an annual basis. This dataset is freely available to research and end-user communities.

11.
Glob Chang Biol ; 26(2): 851-863, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31486191

RESUMO

A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north-east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.


Assuntos
Secas , Temperatura Alta , Mudança Climática , Europa (Continente) , Florestas , Árvores
13.
Front Plant Sci ; 9: 1546, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410500

RESUMO

A better understanding on the consequences of drought on forests can be reached by paying special attention to their resilience capacity, i.e., the ability to return to a state similar to pre-drought conditions. Nevertheless, extreme droughts may surpass the threshold for the resilience capacity triggering die-off causing multiple changes at varying spatial and temporal scales and affecting diverse processes (tree growth and regeneration, ecosystem productivity). Combining several methodological tools allows reaching a comprehensive characterization of post-drought forest resilience. We evaluated the changes in the abundance, regeneration capacity (seedling abundance), and radial growth (annual tree rings) of the main tree species. We also assessed if drought-induced reductions in growth and regeneration of the dominant tree species scale-up to drops in vegetation productivity by using the Normalized Difference Vegetation Index (NDVI). We studied two conifer forests located in north-eastern Spain which displayed drought-induced die-off during the last decades: a Scots pine (Pinus sylvestris) forest under continental Mediterranean conditions and a Silver fir (Abies alba) forest under more temperate conditions. We found a strong negative impact of a recent severe drought (2012) on Scots pine growth, whereas the coexisting Juniperus thurifera showed positive trends in basal area increment (0.02 ± 0.003 cm2 yr-1). No Scots pine recruitment was observed in sites with intense die-off, but J. thurifera and Quercus ilex recruited. The 2012 drought event translated into a strong NDVI reduction (32% lower than the 1982-2014 average). In Silver fir we found a negative impact of the 2012 drought on short-term radial growth, whilst long-term growth of Silver fir and the coexisting Fagus sylvatica showed positive trends. Growth rates were higher in F. sylvatica (0.04 ± 0.003 cm2 yr-1) than in A. alba (0.02 ± 0.004 cm2 yr-1). These two species recruited beneath declining and non-declining Silver fir trees. The 2012 drought translated into a strong NDVI reduction which lasted until 2013. The results presented here suggest two different post-drought vegetation pathways. In the Scots pine forest, the higher growth and recruitment rates of J. thurifera correspond to a vegetation shift where Scots pine is being replaced by the drought-tolerant juniper. Conversely, in the Silver fir forest there is an increase of F. sylvatica growth and abundance but no local extinction of the Silver fir. Further research is required to monitor the evolution of these forests in the forthcoming years to illustrate the cumulative impacts of drought on successional dynamics.

14.
Glob Chang Biol ; 24(5): 2143-2158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29488293

RESUMO

Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.


Assuntos
Cycadopsida/fisiologia , Secas , Florestas , Magnoliopsida/fisiologia , Região do Mediterrâneo , Espanha , Fatores de Tempo
15.
Sci Rep ; 7: 41475, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148960

RESUMO

Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s-1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends.

16.
Glob Chang Biol ; 21(9): 3499-510, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25930066

RESUMO

Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.


Assuntos
Mudança Climática , Florestas , Fungos/fisiologia , Fungos/crescimento & desenvolvimento , Aquecimento Global , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Pinus/crescimento & desenvolvimento , Estações do Ano , Espanha , Temperatura , Água/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(1): 52-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248309

RESUMO

We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.


Assuntos
Biota , Secas , Fenômenos Fisiológicos Vegetais , Geografia , Fotossíntese/fisiologia , Caules de Planta/crescimento & desenvolvimento , Astronave , Fatores de Tempo , Árvores/crescimento & desenvolvimento
18.
Environ Manage ; 34(6): 802-18, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15562324

RESUMO

A vegetation cover increase has been identified at global scales using satellite images and vegetation indices. This fact is usually explained by global climatic change processes such as CO(2) and temperature increases. Nevertheless, although these causes can be important, the role of socioeconomic transformations must be considered in some places, since in several areas of Northern Hemisphere an important change in management practices has been detected. Rural depopulation and land abandonment have reactivated the natural vegetation regeneration processes. This work analyses the vegetation evolution in the central Spanish Pyrenees from 1982 to 2000. The analysis has been done by using calibrated-NDVI temporal series from NOAA-AVHRR images. A positive and significant trend in NDVI data has been identified from 1982 to 2000 coinciding with a temperature increase in the study area. However, the spatial differences in magnitude and the sign of NDVI trends are significant. The role of land management changes in the 20th century is considered as a hypothesis to explain the spatial differences in NDVI trends. The role of land-cover and human land-uses on this process has been analyzed. The highest increment of NDVI is detected in lands affected by abandonment and human extensification. The importance of management changes in vegetation growth is discussed, and we indicate that although climate has great importance in vegetal evolution, land-management changes can not be neglected in our study area.


Assuntos
Conservação dos Recursos Naturais , Planejamento Ambiental , Desenvolvimento Vegetal , Dinâmica Populacional , Altitude , Conservação dos Recursos Naturais/história , Monitoramento Ambiental , História do Século XX , Humanos , Condições Sociais , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...